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Abstract. We provide a comparative study of some typical algorithms
for language equivalence in nondeterministic finite automata and vari-
ous combinations of optimization techniques. We find that their practical
efficiency mostly depends on the density and the alphabet size of the au-
tomaton under consideration. Based on our experiments, we suggest to
use HKC (Hopcroft and Karp’s algorithm up to congruence) [4] if the
density is large and the alphabet is small; otherwise, we recommend the
antichain algorithm (Wulf, Doyen, Henzinger, Raskin) [6]. Bisimulation
equivalence and memoisation both pay off in general. When comparing
highly structured automata over a large alphabet, one should use sym-
bolic algorithms.

1 Introduction

Checking whether two nondeterministic finite automata (NFA) accept the same
language is important in many application domains such as compiler construc-
tion and model checking. Unfortunately, solving this problem is costly: it is
PSPACE-complete [16].

However, the problem is much easier when restricted to deterministic finite
automata (DFA) where nondeterminism is ruled out. Checking language equiva-
lence for DFA can be done using either minimisation [10,12,18] or Hopcroft and
Karp’s algorithm (HK algorithm) [9]. The former searches for equivalent states
in the whole state space of a finite automaton or the disjoint union of two au-
tomata. This works well in practice because for DFA, bisimulation equivalence,
simulation equivalence and language equivalence coincide, and both bisimulation
and simulation can be computed in polynomial time. The HK algorithm is more
appropriate in the case where one only wants to know if two particular states are
language equivalent because it is an “on-the-fly” algorithm that explores merely
the part of state space that is really needed. It should be mentioned that the
HK algorithm exploits a technique nowadays called coinduction [15].

A straightforward idea for checking the language equivalence of two NFA is
to convert them into DFA through a standard powerset construction, and then



execute an equivalence checking algorithm for DFA. Since there are exponen-
tially many state sets in the powerset, one would like to avoid constructing them
as much as possible. In particular, if one only needs to decide if two specific
sets of states in a nondeterministic finite automaton are equivalent, one can con-
struct the state sets on-the-fly, and simultaneously try to build a bisimulation
that relates these sets. With this approach, the number of constructed sets is
usually much smaller than the exponential worst-case bound. In terms of imple-
mentation, it is easy to adapt a naive version of the HK algorithm from DFA to
NFA: The algorithm maintains two sets todo and R. The set todo contains the
pairs (X,Y ) to be checked, where X and Y are two sets of NFA states. The set
R contains the checked (equivalent) pairs. It is a bisimulation relation when the
the algorithm terminates successfully. There are several optimizations for this
algorithm:

1. Reduce the set R by constructing a relation that is not a bisimuation but
is a bisimulation up to equivalence, e. g. the HK algorithm [9], or up to
congruence, e. g. the HKC algorithm [4].

2. Often todo is implemented as a list that may contain repeated elements.
Avoid these repetitions by some memoisation techniques [13].

3. Represent the automata symbolically rather than explicitly by using binary
decision diagrams (BDD) [19,13].

4. Saturate the given automata with respect to bisimulation equivalence or
simulation preorder.

An alternative approach to checking NFA equivalence is to use antichain
algorithms [6,2]. The basic idea is to check language inclusion in both directions.
This approach also exploits the coinduction technique: in order to check whether
the language of a set of NFA states X is a subset of the language of a set of
NFA states Y , it simultaneously tries to build a simulation relation, relating
each state x ∈ X (as a state in the NFA) to Y (as a state in the DFA). This
algorithm can also be optimized by reducing the list todo by memoisation or by
reducing the list R with antichains. The antichain algorithm can be enhanced
by exploiting any preorder contained in language inclusion [2]. For example, the
simulation preorder can be used for this purpose.

In this paper we investigate the mentioned algorithms and their combinations
with optimizations to achieve the best time efficiency. We find that in most cases
the antichain algorithm is stable and often outperforms other algorithms. In con-
trast, the performance of HK and HKC algorithms may vary a lot, depending
on the size of the alphabet and the density of transitions in the automata under
consideration. When the size of the alphabet is small (e. g. 2) and the density is
large (e. g. 1.25 or 1.5), HKC is the best choice. Otherwise, computing congru-
ence closures is very costly and renders HKC impractical to use. One should use
memoisation because it mostly accelerates the algorithms. Further, if the consid-
ered automata are highly structured and over a large alphabet, one should try
the symbolic algorithms because the BDDs are usually small in such situations.
Finally we suggest to minimize the automata by bisimilarity instead of saturat-
ing the automata by similarity before performing the algorithms. Although the



latter is more powerful, the time efficiency of computing the bisimilarity makes
the total time shorter.

The rest of this paper is organized as follows. In Section 2 we recall some basic
concepts. In Section 3 we introduce the HK, HKC and antichain algorithms and
relevant optimizations. In Section 4 we assess those techniques introduced previ-
ously by comparing their running times experimentally. We discuss related work
in Section 5 and summarize our recommendations in the concluding Section 6.

2 Preliminaries

Finite Automata. A Nondeterministic Finite Automaton (NFA) A is a tuple
(Σ,Q, I, F, δ) where: Σ is an alphabet, Q is a finite set of states, I ⊆ Q is a non-
empty set of initial states, F ⊆ Q is a set of accepting states, and δ ⊆ Q×Σ×Q
is the transition relation. A word u = u1u2 . . . un is accepted by q ∈ Q if there
exists a sequence q0u1q1u2 . . . unqn such that q0 = q, qj ∈ δ(qj−1, uj) for all
0 < j ≤ n and qn ∈ F . Define L(q) = {u | u is accepted by q} as the language
of q and L(A) =

⋃
q∈I L(q) as the language of A. Two NFA A,B are said to be

language equivalent iff L(A) = L(B).
An NFA is called deterministic if |I| = 1 and |δ(q, a)| ≤ 1 for all q ∈ Q and

a ∈ Σ. For each NFA A = (Σ,Q, I, F, δ), we can use the standard powerset
construction [3, Sect. 4.1] to transform it to a DFA A] = (Σ,Q], I], F ], δ]) with
the same language.

The NFA equivalence checking problem is to decide whether two given NFA
accept the same language.

Simulation and Bisimulation

Definition 1. Let R, R′ ⊆ Q×Q be two binary relations on states, we say that
R s-progresses to R′, denoted R�s R

′, if x R y implies:

– if x is accepting, then y is accepting;
– for any a ∈ Σ and x′ ∈ δ(x, a), there exists some y′ ∈ δ(y, a) such that
x′ R′ y′.

A simulation is a relation R such that R�s R and a bisimulation is a relation
R such that R�s R and R−1�s R

−1, where R−1 is the inverse relation of R.
The largest simulation and bisimulation are called similarity and bisimilarity,

denoted by - and ∼, respectively. For any NFA, if a bisimulation between two
states can be found, then they are language equivalent. Similarly, for any NFA,
if a simulation between two states can be found, for example x - y, then L(x) ⊆
L(y). The reverse direction of these two implications holds in general only for
DFA. Computing similarity needs O(|δ| · |Q|) time [7,14,1,8], while computing
bisimilarity is faster, as it is in O(|δ| · log |Q|) [18]. Bisimulation is a sound proof
technique for checking language equivalence of NFA and it is also complete for
DFA. Simulation is a sound proof technique for checking language inclusion of
NFA and it is also complete for DFA.



Binary Decision Diagrams. A standard technique [19,13] for working with au-
tomata over a large alphabet consists in using BDDs to represent the automata.
A Binary Decision Diagram (BDD) over a set of variables Xn = {x1, x2, . . . , xn}
is a directed, acyclic graph having leaf nodes and internal nodes. There is exactly
one root node in a BDD; each internal node is labelled with a variable and has
two outgoing edges whose ends are other nodes. The leaf nodes are labelled with
0 or 1. After fixing the order of variables, any BDD can be transformed into a
reduced one which has the fewest nodes [5]. In the sequel, we only work with
reduced ordered BDDs, which we simply call BDDs.

BDDs can be used to represent functions of type 2Xn → {0, 1}. Here, we
use BDDs to represent NFA. The advantage is that one often does not need
many variables. For example, if there are 2k letters, one only needs k variables
to encode (the characteristic function of) a set of letters.

3 Algorithms and Optimizations

3.1 A Naive Algorithm for Language Equivalence checking

A naive adaptation of Hopcroft and Karp’s algorithm from DFA to NFA is
shown in Algorithm 1. Starting with the two sets of initial states, we do the
powerset construction on-the-fly for both NFA and simultaneously try to build
a bisimulation relating these two sets. The sets of states of the NFA become the
states of the DFA constructed by powerset construction. We use two sets: todo
and R. We call a pair (X,Y ) a bad pair if one of X and Y is accepting but
the other is not. Whenever we pick a pair from the set todo, we check if it is a
bad pair; if it isn’t, we generate their successors and insert these successor pairs
into todo. The set R is used to store the processed pairs: if a pair is in R, the

Algorithm 1. The Naive Eq algorithm for checking NFA equivalence

Input: two NFA A = (Σ,QA, IA, FA, δA) and B = (Σ,QB , IB , FB , δB)
Output: “Yes” if L(A) = L(B), otherwise “No”
1: R := ∅, todo := {(IA, IB)}
2: while todo 6= ∅ do
3: Pick (X,Y ) ∈ todo and remove it
4: if (X,Y ) 6∈ R then
5: if (X,Y ) is a bad pair then
6: return “No, L(A) 6= L(B).”
7: end if
8: for all a ∈ Σ do
9: todo := todo ∪ {(δ]A(X, a), δ]B(Y, a))}

10: end for
11: R := R ∪ {(X,Y )}
12: end if
13: end while
14: return “Yes, L(A) = L(B).”



states are language equivalent if the pairs in todo are language equivalent. In a
formula, R�s R∪ todo and R−1�s R

−1 ∪ todo−1. If the algorithm terminates
with the return value “yes”, R is a bisimulation between A] and B].

When checking (X,Y ), the algorithm eventually determinizes both parts cor-
responding to X and Y , that is, it compares X (regarded as state of A]) with
Y (regarded as state of B]). Based on the naive algorithm, one can imagine
several optimizations: One idea is to try to reduce the number of pairs in R; the
algorithm proposed in [9] by Hopcroft and Karp (called the HK algorithm) does
so. In [4] Bonchi and Pous extend the HK algorithm by exploiting the technique
of bisimulation up to congruence and obtain the HKC algorithm, in which R
contains even fewer pairs. Another idea is to reduce the number of pairs in todo
by so-called memoisation. The observation is very simple: one does not need
to insert the same pair into todo more than once. (In practice, the set todo is
often implemented as a list, so it actually can “contain” an element multiple
times.) Besides these, one can do some preprocessing: One can use bisimilarity
or similarity to saturate the NFA before running the algorithms, in the hope
to accelerate the main algorithm. In addition, we also test whether it is a good
idea to use BDDs to represent transition functions and then perform symbolic
algorithms.

3.2 Reducing R

We only need to know whether there exists a bisimulation relating two sets,
and it is unnecessary to build the whole bisimulation. So we can reduce R to a
relation that is contained in – and sufficient to infer – a bisimulation.

HK algorithm. Hopcroft and Karp [9] propose that if an encountered pair is
not in R but in its reflexive, symmetric and transitive closure, we can also skip
this pair. Ignoring the concrete data structure to store equivalence classes, the
HK algorithm consists in simply replacing Line 4 in Algorithm 1 with

4: if (X,Y ) 6∈ rst(R) then

where rst is the function mapping each relation R ⊆ P(Q) × P(Q) into its
reflexive, symmetric, and transitive closure. With this optimization, the num-
ber of pairs in R will be reduced. When the algorithm returns “yes”, R is no
longer a bisimulation, but is contained in a bisimulation [4] and one can infer a
bisimulation from R.

HKC algorithm. Based on the simple observation that if L(X1) = L(Y1) and
L(X2) = L(Y2) then L(X1 ∪ X2) = L(Y1 ∪ Y2), Bonchi and Pous [4] improve
the HK algorithm with congruence closure. One gets the HKC algorithm just by
replacing Line 4 in Algorithm 1 with

4: if (X,Y ) 6∈ rstu(R ∪ todo) then



where rstu is the reflexive, symmetric, and transitive closure extended with the
following union of relations: u(R) is the smallest relation containing R satisfying:
if X1 R Y1 and X2 R Y2, then (X1 ∪X2) u(R) (Y1 ∪ Y2). Note that Bonchi and
Pous use R∪ todo rather than R because this helps to skip more pairs, and this
is safe since all pairs in todo will eventually be processed [4].

When the HKC algorithm returns “yes”, R is also contained in a bisimula-
tion [4] and sufficient to infer one.

In order to check whether a pair is in the equivalence closure of a relation,
Hopcroft and Karp use disjoint sets forests to represent equivalence classes, which
allow to check (X,Y ) 6∈ rst(R) in almost constant amortised time. Unfortunately,
this data structure cannot help one to do the checking for congruence closure
rstu. Bonchi and Pous use a set rewriting approach to do this. However, this
requires to scan the pairs in R one by one, which makes it slow. As we shall
show in the experiments, this has a great impact on the performance of HKC.

3.3 Reducing todo

The pairs in todo are those to be processed. However, if this set is implemented as
a list or similar data structure, there are often redundancies. We can remember
that some element has already been inserted into todo earlier; this is called
memoisation. In Line 9, we check whether we have inserted the same pair into
todo earlier and only insert the pair if it never has been in todo. (Note that this
also skips pairs that have in the meantime moved from todo to R.) We can use
hash sets to check this condition in constant time.

3.4 BDD representation

Pous [13] proposed a symbolic algorithm for checking language equivalence of
finite automata over large input alphabets. By processing internal nodes, the
symbolic algorithm may insert fewer pairs into todo, which makes us want to
know whether it can save time if we perform the symbolic algorithm instead of
the explicit one.

The symbolic version of the HK and HKC algorithms and of memoisation
can be easily constructed from the explicit ones. The only difference is that the
pairs of sets of states become pairs of BDD nodes, including leaf nodes and
internal nodes. If a pair of internal nodes is skipped, then all its successors are
also skipped. This is why the symbolic algorithm may have fewer pairs in todo.

3.5 Preprocessing operations

Bonchi and Pous [4] extend the HKC algorithm to exploit the similarity preorder.
It suffices to notice that for any similarity pair x - y (in the NFA), we have
{x, y} ∼ {y} (in the DFA). So to check whether (X,Y ) ∈ rstu(R ∪ todo), it
suffices to compute the congruence closure of X and Y w. r. t. the pairs from
R ∪ todo ∪ {({x, y}, {y})|x - y}. This may allow to skip more pairs. However,
the time required to compute similarity may be expensive.



Since bisimilarity can be computed in less time than similarity, it may be
advantageous to replace similarity with bisimilarity. So we can replace the simi-
larity with bisimilarity to get another algorithm, i. e. computing the congruence
closure of X and Y w. r. t. the pairs from R ∪ todo ∪ {({x}, {y})|x ∼ y}.

As a matter of fact, we can use this technique as a preprocessing operation.
For similarity, we saturate the original NFA w. r. t. the similarity preorder before
running the algorithms. For bisimilarity, we choose another approach, that is
taking a quotient according to bisimilarity. This amounts to saturating the NFA
w. r. t. bisimilarity, but it is more efficient. Note that we do not take a quotient
according to simulation equivalence, because it is less powerful than saturating
the NFA w. r. t. similarity. Although taking a quotient according to bisimilarity
may be less powerful than saturating by similarity, using bisimilarity makes the
total time shorter in many cases, which is shown in Section 4.

3.6 Algorithms for Language Inclusion Checking

Instead of directly checking language equivalence for NFA, it is possible to
check two underlying language inclusions: for any pair (X,Y ), we check whether
L(X) ⊆ L(Y ) and L(Y ) ⊆ L(X). If both of them hold, we have L(X) = L(Y ).
So it is enough to solve the problem of checking L(X) ⊆ L(Y ). The naive algo-
rithm is quite similar to the one for checking equivalence. Here, we call a pair
(x, Y ) a bad pair if x is accepting but Y not. The idea of the algorithm is still:
Whenever we pick a pair from todo, we check whether it is a bad pair; if not, we
insert the successor pairs into todo.

When checking (X,Y ), the algorithm eventually determinizes the part corre-
sponding to Y and remains nondeterministic for X, that is, it compares x ∈ X
from A and Y from B]. The sets todo and R will therefore be subsets of
QA×P(QB). Again, the naive algorithm allows for several optimizations. Mem-
oisation can be used without modifications. The antichain algorithm proposed
in [6] aims to reduce the number of pairs in R, and it can be enhanced by
exploiting similarity [2].

Given a partial order (X,v), an antichain is a subset Y ⊆ X containing only
incomparable elements. The antichain algorithm exploits antichains over the set
QA×P(QB), equipped with the partial order (x1, Y1) v (x2, Y2) iff x1 = x2 and
Y1 ⊆ Y2.

In order to check L(X) ⊆ L(Y ) for two sets of states X,Y , the antichain
algorithm ensures that R is an antichain of pairs (x′, Y ′). If one of these pairs
p is larger than a previously encountered pair p′ ∈ R (i. e. p′ v p) then the
language inclusion corresponding to p is subsumed by p′ so that p can be skipped.
Conversely, if there are some pairs p1, . . . , pn ∈ R which are all larger than p
(i. e. p v pi for all 1 ≤ i ≤ n), one can safely remove them: they are subsumed
by p and, by doing so, the set R remains an antichain. We denote the antichain
algorithm as “AC”.

Abdulla et al. [2] propose to accelerate the antichain algorithm by exploiting
similarity. The idea is that when processing a pair (x, Y ), if there is a previously
encountered pair (x′, Y ′) such that x - x′ and Y ′ - Y (which means ∀y′ ∈



Y ′,∃y ∈ Y : y′ - y), then (x, Y ) can be skipped because it is subsumed by
(x′, Y ′). For the same reason as in Sect. 3.5, we can also use bisimilarity instead
of similarity.

Here, we can still take a quotient according to bisimilarity before performing
the algorithms. However, we can not saturate the NFA like in Section 3.5 because
the algorithms need to maintain an antichain and if we saturate the NFA, there
would be lots of pairs which can be actually skipped. So we can only exploit
similarity while running the algorithms, which sometimes slows them down.

4 Experiments

In this section, we describe some experiments to compare the performance of all
the algorithms.

We implemented all the algorithms mentioned above in Java. For the sym-
bolic algorithms, we use the JavaBDD library [20]. We implemented the al-
gorithm in [18] to compute bisimilarity and the algorithm in [8] to compute
similarity, which, as far as we know, are the two fastest algorithms to com-
pute bisimilarity and similarity, respectively. All the implementation details are
available at https://github.com/fuchen1991/EBEC.

We conducted the experiments on random automata and automata obtained
from model-checking problems. All the experiments were performed on a machine
with an Intel i7-2600 3.40 GHz CPU and 8 GB RAM.

Random automata: We generate different random NFA by changing three
parameters: the number of states (|Q|), the number of letters (|Σ|), and
the density (d), which is the average out-degree of each state with respect
to each letter. Although Tabakov and Vardi [17] empirically showed that
one statistically gets more challenging NFA with d = 1.25, we find that
with different densities, the performance of algorithms varies a lot and the
densities of many NFA from model checking are much smaller than this value,
so we test more values for this parameter. For each setting, we generated 100
NFA. To make sure that all the algorithms meet their worst cases, there are
no accepting states in the NFA (So we have to skip the operation of removing
non-coaccessible states, otherwise this reduces each NFA to the empty one).
The two initial state sets are two distinct singleton sets.

Automata from model checking: Bonchi et al. [4] use the automata pro-
vided by L. Hoĺık, which come from the model checking of various programs
(the bakery algorithm, bubble sort, and a producer-consumer system). We
also use these automata. The difference between our work and Bonchi et al.
is that they only show the performance of HKC and AC after preprocessing
with similarity, while we compare more algorithms.

We record the running time of each algorithm on the above NFAs, mea-
sured as the average over four executions. We depict all the data by boxplots
– a method for graphically depicting groups of numerical data through their
quartiles. In a boxplot, the box denotes the values between the lower quartile

https://github.com/fuchen1991/EBEC


and the upper quartile, and the horizontal line in the box denotes the median
value. Numbers which are outside 1.5 times the interquartile range above the
upper quartile or below the lower quartile are regarded as outliers and shown as
individual points. Finally, the two end points of the vertical line outside the box
denote the minimal and maximal values that are not considered to be outliers.

4.1 Memoisation accelerates the algorithms

In most situations, memoisation saves time because it reduces the pairs in todo.
But the effects for the three algorithms are different, that is, it saves more time to
optimize HKC with memoisation than HK and AC. For HKC, repeated pairs are
skipped because they are in the congruence closure of R (Algorithm 1, Line 4).
This check costs much more time than the corresponding checks of HK and
AC. Besides, memoisation needs less time than all the three methods to remove
repeated pairs. So as we can see in Figure 1, the huge difference of the number
of pairs in todo leads to the huge difference of time for HKC, but leads to small
difference for HK and AC.
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Fig. 1. Comparison of algorithms with and without memoisation (|Q| = 500, |Σ| =
50, d = 0.1)

When memoisation only reduces a few pairs in todo, it just costs a little more
time because memoisation requires only constant time. So it always pays off to
use memoisation. In the follwoing, we always use memoisation for HK, HKC,
and AC.

4.2 BDDs are only suitable for highly structured NFA

As discussed in Section 3.4, storing NFA with BDDs and performing symbolic
algorithms can reduce the pairs in todo. However, we find that this variant slows



down the algorithms on random NFA for most settings, as shown in Figure 2(a).
This is because it is hard to generate highly structured random NFA.

The size of the BDD highly depends on the structure of the automaton. If an
automaton has many symmetries, there are fewer nodes in the BDD; this makes
the symbolic algorithms run faster. Also, the performance of explicit algorithms
on automata over large alphabet is bad, while BDDs can represent large alpha-
bets with few variables, so symbolic algorithms are preferable for this kind of
automata.

In order to show this, we let |Q| = 4, |Σ| = 217 = 131072, and d = 4.0, which
may be impractical, but a clear example to exhibit the advantage of symbolic
algorithms. In this NFA, each state has a transition to all states on all input
symbols, so the algorithms only need to process two pairs, namely the pair of
initial state sets and the pair of sets containing all states. An explicit algorithm
needs to scan every symbol in Σ, while there is only one node in the BDD, which
makes symbolic algorithm faster. The result is shown in Figure 2(b).
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Fig. 2. Comparison of explicit and symbolic algorithms

4.3 Comparison of HK, HKC and AC

In addition to |Q|, |Σ| and d, there is another parameter that should be con-
sidered: the number of transitions, |δ| = |Q| · |Σ| · d. Here, we compare the
performance of HK, HKC and AC under different settings of these parameters.

First, let us fix |Σ| = 2 and d = 1.25 and vary the state space size |Q|.
The result is shown in Figure 3(a). When increasing |Q| (and also |δ|), the time
required by all the three algorithms increases, and HK increases much faster



than the others. HKC performs best, and AC has some bad outliers, which can
be more than 100 times slower than HKC.

Then, we fix |Q| = 150 and d = 1.25 and vary the alphabet size |Σ|. The result
is shown in Figure 3(b): Upon increasing |Σ| (and also |δ|), the time required
by all the three algorithms increases, and HK increases much faster than the
others. The average performance of AC is best overall; however, if |Σ| = 2, there
are some very slow outliers, so HKC may be preferable, as its performance is not
much worse than the average of AC.

Next, we fix |Q| = 300 and |Σ| = 10 and vary the density d. The measure-
ments are shown in Figure 3(c). Basically, the time first increases then decreases
as the density grows. But the peak values appear at different densities for the
three algorithms. The peak value of HKC appears to be near d = 1, but for
HK and AC at a much larger density. We do not expect very large densities in
practice; if the density is maximal (d = |Q|), then it can be found very quickly
that all states are language equivalent. Still, HK always performs worst. When
the density is between 0.1 and 1.25, AC performs 10 to 100 times faster than
HKC, but when the density is 1.5, HKC can be several times faster than AC.

Until now, we have seen that HK always performs worse than at least one
of the other two algorithms, and no one of HKC and AC always performs best.
In the following, we only compare the performance of HKC and AC to find out
in which situation HKC performs better and in which situation AC performs
better.

Let us fix |Q| = 500 and |δ| = 2500 and let |Σ| and d vary. The result is
shown in Figure 3(d). The running time remains approximately the same as we
fix |Q| and |δ|, but HKC performs better at |Σ| = 2, d = 1.25 and worse in other
settings. Then we fix |Σ| = 2 and |δ| = 2500. The result is shown in Figure 3(e).
We can see that HKC is always worse except d = 1.25. Finally, we fix |Σ| = 50
and |δ| = 25000. The result is shown in Figure 3(f). We can see that HKC is
always slower than AC when |Σ| = 50. The smaller the density is, the larger
difference between the performance of HKC and AC is.

In conclusion, HKC performs better when d is large and |Σ| is small. In this
setting, the maximal value of AC is always very large, which can be 10 to 100
times slower than HKC. Moreover, there are always some bad outliers for AC.
So HKC is a better choice in this setting. But If d is small or |Σ| is large, AC
can even be more than 100 times faster than HKC.

4.4 Automata from model checking

Now we compare the performance of HK, HKC, AC and all these three algo-
rithms with preprocessing with similarity and bisimilarity on the automata from
model checking. Bonchi and Pous state that HKC can mimic AC even for lan-
guage inclusion problem. Here, we also use these algorithms to check language
inclusion for the automata.

We perform all the three algorithms without any preprocessing (“Plain”),
with saturating w. r. t. similarity (“Sim”), and minimizing w. r. t. bisimilarity
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Fig. 3. Comparison of HK, HKC and AC



(“Bisim”), respectively. We separate the results into those for which the inclu-
sion holds and those for which the inclusion does not hold. Figure 4 shows the
total running time of each algorithm. First, we find that the densities of these
automata are all between 0.05 and 0.49, and over half of them are smaller than
0.19. Their alphabet sizes are between 7 and 36, and over half of them are smaller
than 20. We also observe that the performance difference of the algorithms is
similair to Figure 3(c) with d = 0.1. This is approximately in agreement with
our conclusion for random automata. Second, as we can see the total running
time of preprocesssing with bisimilarity is much shorter than similarity because
computing bisimilarity is often much faster than similarity. Preprocesssing with
similarity may even be slower than no preprocessing at all, but this does not
happen for bisimilarity.
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Fig. 4. Total time of algorithms with different preprocessing operations

4.5 Tools: EBEC, hknt, and VATA

We also conducted experiments with other tools. Abdulla et al. [2] implemented
their algorithm in their tool “VATA” [11] in C++, and Bonchi and Pous [4]
implemented the HKC algorithm in their tool “hknt” in OCaml.

We again run experiments on the same automata sets used in Section 4.4.
The result is shown in Figure 5. In this figure, “EBEC” denotes our tool in
which we choose the antichain algorithm with memoisation and preprocessing
with bisimilarity, since it is the optimal combination according our previous ex-
periments. “hknt” denotes Bonchi and Pous’s tool running their HKC algorithm
and “VATA, VATA sim” the tool of Abdulla et al. running the basic antichain al-
gorithm and antichain algorithm with preprocessing with similarity respectively.
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Fig. 5. Comparison of the tools

We choose 10 minutes as the timeout and find that for a few tests, hknt
and VATA sim does not terminate in this time, while EBEC and VATA both
terminate. We also see that our tool performs about 10 times faster than hknt
in both situations. When the inclusion holds, EBEC is 2–3 times faster than
VATA and VATA sim. When the inclusion does not hold, our tool EBEC has
the same performance as VATA on most automata and is up to 2.5 times slower
on some automata. However, one should note that if the inclusion does not hold,
the performance highly depends on the order of visiting the states.

5 Related Work

To our knowledge, VATA implemented by Abdulla et al. [2] is the most efficient
implementation currently available for the antichain algorithms. They compare
their algorithm with the naive algorithm and the basic antichain algorithm [6],
but not with other algorithms.

Bonchi and Pous propose that HKC can be optimized by similarity [4], but
their implementation of the algorithm to compute similarity is slow, because it
is based on the algorithm proposed by Henzinger et al. [7], which is not fast
enough nowadays. Bonchi and Pous compare HKC with HK and AC only on
random automata, and they also compare HKC and AC after preprocessing with
similarity. However, they do not show the total time of these two algorithms. In
our work, we find that preprocessing with similarity is not that good, even makes
the total time longer sometimes. So we propose preprocessing with bisimilarity,
and the experiments show that it is preferable.

Pous [13] proposes a symbolic algorithm for checking language equivalence of
finite automata over large alphabets and applies it to Kleene algebra with tests.



We have implemented the symbolic version of HK and HKC, and show that the
symbolic algorithm is suitable for highly structured automata, especially those
over large alphabets.

6 Conclusion

We have reviewed various algorithms and optimization techniques for checking
language equivalence of NFA, and compared their performance by experiments.

We find that their practical efficiencies depend very much on the automata
under consideration. But according to the automata to be checked, one can
choose the appropriate algorithm: If the density is large and the alphabet size
is small, then one should choose HKC (Hopcroft and Karp’s algorithm up to
congruence) [4], otherwise the antichain algorithm (Wulf, Doyen, Henzinger,
Raskin) [6]. Moreover, one should always use memoisation and minimize the
automata by bisimilarity before performing the algorithm. One may choose to
use a symbolic algorithm when working with highly structured automata over
a large alphabet. Finally, we compared the performance of our tool “EBEC”
with “VATA” and “hknt” and showed that EBEC can perform better on most
automata we tested.
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