On Automatic Verification of Self-stabilizing Population Protocols

Jun Pang
University of Luxembourg
Computer Science and Communications
L-1359 Luxembourg

Zhengqin Luo

Yuxin Deng

Shanghai Jiao Tong University
Department of Computer Science and Engineering
200240 Shanghai, China

Abstract

The population protocol model [2] has emerged as an
elegant computation paradigm for describing mobile ad
hoc networks, consisting of a number of mobile nodes
that interact with each other to carry out a computa-
tion. The interactions of nodes are subject to a fairness
constraint. One essential property of population proto-
cols is that all nodes must eventually converge to the
correct output value (or configuration). In this paper,
we aim to automatically verify self-stabilizing popula-
tion protocols for leader election and token circulation
in the Spin model checker [11]. We report our verifi-
cation results and discuss the issue of modeling strong
fairness constraints in Spin.

1 Introduction

The field of distributed algorithms has enjoyed a
rapid growth in the last two decades, due to the world-
wide development and usage of mobile ad hoc net-
works. A great number of algorithms have been in-
vented to solve hard problems in mobile ad hoc net-
works. However, these algorithms are only accessible to
the distributed algorithms community, since their spec-
ifications and correctness arguments are often given at
an informal level. This is insufficient to convince re-
searchers outside the field of the validity of the argu-
ments. If one wants to verify the correctness of some
proofs, he has to prove substantial parts or entire sub-
results, for which only informal arguments were given.
This has been observed and illustrated in a recent pa-
per [8] on formal reasoning about the correctness of a
distributed consensus algorithm [4].

The last two decades have also seen an impressive
amount of new techniques developed in the area of for-
mal verification or model checking. Model checking first
builds a finite state space of a formal model of a system,
and then verifies a property, written in some temporal
logic, through an explicit state space search. Due to the
finiteness of the state space, the search always termi-
nates. Hence, model checking is largely automatic. It
can produce an answer in a few minutes or even seconds
for many models. A counter-example can be generated
when the checked property fails to hold. Techniques
such as symbolic representation, symmetry reduction,
and predicate abstraction, have been developed to deal
with the state explosion problem and enhance the scal-
ability of model checking. However, these techniques
have not yet made impact on distributed algorithms,
mainly because there have not yet been enough exam-
ples of non-trivial practical applications.

Clearly, both two fields, distributed algorithms vs.
formal verification, can benefit from each other. On the
one hand, formal verification can offer techniques to
well-understand distributed algorithms. On the other
hand, distributed algorithms can offer challenging ap-
plications to formal verification.

We apply model checking to self-stabilizing popula-
tion protocols in this paper. The population protocol
model [2] has emerged as a new elegant computation
paradigm for describing mobile ad hoc networks, con-
sisting of a number of mobile nodes that interact with
each other to carry out a computation. Each node has
only a few states. One essential property of such pro-
tocols is that all nodes must eventually converge to the
correct output value (or configuration), which is a typ-
ical liveness property (something good will eventually
happen) in terms of formal verification. To guaran-

tee that such kind of property can be achieved, the
interactions of nodes in population protocols are sub-
ject to a fairness constraint. The fairness condition is
imposed on the adversary to ensure that the protocol
makes progress. In population protocols, the required
fairness condition will make the system behave nicely
eventually, although it can behave arbitrarily for an
arbitrarily long period [2]. That is why for population
protocols correctness arguments are always rephrased
as a property to be satisfied eventually. In formal veri-
fication, fairness is typically used to rule out some un-
realistic runs due to non-determinism, i.e., it mainly
concerns with a fair resolution of non-determinism in
the models. So unsurprisingly, fairness has been a re-
search topic to both communities, see [3, 14, 17, 16, 5].

In this paper, we aim to automatically verify self-
stabilizing population protocols for leader election and
token circulation in the Spin model checker [11]. In
next section we review the basic population protocol
model and the fairness conditions which are required
for population protocols. The general framework for
modeling population protocols in Spin is given in Sec-
tion 3. In Section 4 and Section 5, we discuss experi-
ment results on automatic verification of self-stabilizing
leader election for complete graphs [6] and token cir-
culation for directed rings [1], respectively. For leader
election in complete graphs, we show that the algo-
rithm also works under a weaker fairness condition.
For token circulation in directed rings, the algorithm is
model checked in a two-phase manner. We first show
that under a particular activation order of nodes, sat-
isfying the global fairness condition, some pre-defined
safe configurations will be eventually reached. Then
we show that from these safe configurations eventu-
ally token circulation is stabilized. In Section 6, we
demonstrate that global fairness generally assumed for
population protocols is necessary. We present counter-
examples that we have observed in Spin to show that
self-stabilizing token circulation cannot be achieved
with local fairness. Finally, we discuss the difficulty
of modeling global fairness in Spin and conclude the
paper by pointing out some possible future work in
Section 7.

2 The Population Protocol Model

We briefly introduce the population protocol model
in this section, more details are available in [1, 6].

2.1 Model and definitions

In our framework, the underlying network can be
described by a directed graph G = (V,E) without

multi-edges and self-loops. Each vertex represents a
simple finite-state sensing device, and each edge (u,v)
means that u as an initiator could possibly communi-
cate with v as a responder.

A protocol is specified as a tuple P(Q,C, X,Y,0,0)
which contains a finite set (Q of states, a set C of con-
figurations, a finite set X of input symbols, a finite set
Y of output symbols, an output function O : Q — Y,
and a transition function ¢ : (Q x X) x (@ x X) —
20XQ If (p',¢") € §((p,x),(q,y)), then we write
((p,x),(q,y)) — (p',q') and call it is a transition.
When § always maps to a set that only contains a sin-
gle pair of states, then we call the protocol and the
transition function deterministic.

A configuration C is a mapping C' : V — @ as-
signing to each node its internal state, and an input
assignment « : V. — X specifies the input for each
node. Let C' and C’ be configurations, a be an input
assignment, and w,v be different nodes. If there is a
pair (C'(u), C'(v)) € 8((C(u), a(w)), ((C(v), a(v)), we
say that C goes to C’ via edge e = (u, v) by transition
5((C(u), a(u)), ((C(v),a(v))) — (C'(u), C"(v)), abbre-
viated to (C,a) < C’. A pair of a transition r and an
edge e constitutes an action o = (r,e). If C goes to C’
via some edge, then C can go to C’ in one step, written
as (C,a) = C".

An ezecution is an infinite sequence of configurations
and assignments (Cp, ag), (C1, 1) such that for each 4,
(07:7047:) — Uit

2.2 Fairness conditions

In the following, we first summarize the fair-
ness conditions for population protocols. Let E =
(Co,), (C1, 1), ..., (Cy, a5), . .. be an execution.

Global fairness For every C, a, and C’ such that
(Ci, ;) — Ciy1, if (Cy, ;) = (C, @) for infinitely many
i, then (C;, ;) = (C,) and Cij4q = C’ for infinitely

many %.

Local fairness For every action o, if o is enabled in
(Ci, «;) for infinitely many ¢, then (C;, ;) N i+1 for
infinitely many 1.

It should be noticed that the global fairness is
strictly stronger than the local fairness [6]. The global
fairness requires that each step that can be taken in-
finitely often is actually taken infinitely often, while the
local fairness asserts that each action which is enabled
infinitely often is actually taken infinitely often. Since
one action can be enabled in different configurations,
the global fairness insists that an action must be taken

infinitely often in all such configurations, whereas the
local fairness only requires that it occurs infinitely of-
ten in one of such configurations.

In [6], two extra weak notions of fairness conditions
are presented. The weak forms of fairness do not in-
sist that particular steps occur infinitely often in F
but only that the configurations that would result from
those steps occur infinitely often. The relationship be-
tween these four kinds of fairness conditions are dis-
cussed thoroughly in [6].

As discussed before, in the area of formal verifi-
cation, fairness is typically needed to prove liveness
properties. It is concerned with a fair resolution of
non-determinism, i.e., fairness conditions are used to
rule out some unrealistic runs due to non-determinism.
Usually, in formal verification a strong fairness condi-
tion states that if an activity is infinitely often enabled
then it has to be executed infinitely often. This can
be mapped into the population protocol model as the
global and local fairness above, depending that the ac-
tivity is either one step or one action. There is another
notion of weak fairness in verification, stating that if
an activity is continuously often enabled (no temporary
disabling) then it has to be executed infinitely often.

Weak fairness For every action o, if there exists
i and for all j > 4, o is is always enabled at (C;, a;)
in E, then there exist C,a, C’ such that (C,a) % C’
occurs infinitely often.

This form of fairness is supported in Spin, see
Section 3 for details. Note that we cannot have a
similar fairness condition in which an action becomes
enabled forever with respect to one concrete configu-
ration, since the configuration of the system will be
updated by other actions.

3 Automatic Verification in Spin

The Spin model checker is a popular tool set for
verification of concurrent systems [11, 10]. A model-
ing language Promela (Process Meta Language) is used
to specify a concurrent system consisting of some pro-
cesses that are the basic dynamic system components.
Given a model described in Promela, Spin can either
run random simulations to check the validation of func-
tional behavior, or generate efficient C programs to
verify the correctness with respect to some constraint
conditions. Its verifier can find non-progress cycles, or
verify general properties which are expressed by linear
temporal logic (LTL) formulas. The verifier also pro-
vides an option for weak fairness among processes, that
is, if a process is eventually permanently enabled in the

run, then the process is executed infinitely often in the
run. The reader is referred to [12] for more details.

In the population protocol model, one protocol con-
sists of N nodes, numbered from 0 to N —1. The proto-
col is usually described by a set of rewriting rules. On
the left hand side of each rule, the state and the input
of the initiator and the responder should be matched
by the rules. On the right hand side, the rule specifies
the state of the initiator and the responder after the
transition has been taken.

Since the population protocols always depend on
some kind of fairness condition, such as the global and
local fairness, we attempt to use the weak fairness con-
dition (on processes) in Spin to model a fairness con-
dition in population protocols. However, the fairness
condition in population protocol model is related to ac-
tions/steps but not to nodes (processes). Thus, if we
use a single process in Promela to model a single node
of the population protocol model, then the weak fair-
ness condition only guarantees that if a node is from
some moment onward always enabled, then it will be
executed infinitely often. This obviously does not make
any sense when verifying population protocols. Our
strategy is to use a single process to represent an ac-
tion which is related to an initiator, a responder and a
rewriting rule. The process declaration for a transition
in Promela is described in the following way:

proctype Rulen(int i; int r)

The parameters i and r are identities of an initiator
and a responder. The process name Rulen corresponds
to some concrete rule n in the algorithm. The state
of each node is stored in some global variable. The
process will check the global configuration to decide
the executability of its own. For example, Rulel(1,2)
represents an action between node 1 as an initiator and
node 2 as a responder according to rule 1. The entire
system consists of all possible actions between every
pair of nodes which can communicate with each other.

run Rulel(0,1);
run Rulel(1,0);
run Rulel(1,2);

run Rule2(2,0);

The different communication patterns are determined
by different network topologies, such as complete
graphs and directed rings.

By using the weak fairness condition in the Spin
model checker, we immediately obtain a condition
strictly weaker than the local fairness in the popula-
tion protocol model. The condition is exactly the weak

fairness as discussed in Section 2.2. Otherwise we have
to use a large LTL formula and auxiliary variables to
characterize the strong (global and local) fairness con-
ditions which will increase the complexity of the model
(see more discussion in Section 7). The weak fairness
condition only assumes that if an action is permanently
enabled from some point, then it will be taken infinitely
many times. Most self-stabilizing population protocols
require either global or local fairness. However, we have
found that some of them also work properly under this
weak fairness condition implemented in the Spin model
checker. In the following sections, protocols will be ver-
ified under this weak fairness condition.

Once a model has been built, we could define a
bunch of propositions which refer to different system
states. Finally, LTL formulas over these propositions
can be used to specify some desired behaviors of the
protocol. The LTL formulas will be translated into
never claims in Prolema automatically, and verified by
the Spin model checker.

4 Self-stabilizing Leader Election in
Complete Graphs

In this section, we show that self-stabilizing leader
election in complete graphs can be achieved under the
weak fairness with the help of an eventually correct
leader detector. The algorithm was originally given in
[6]. Every node has one bit memory which represents
two states, being a leader or not. The leader detector
gives each node an input true (T) or false (F) to indicate
that whether there is a leader in the network. The
detector may give wrong answers sometimes, but it will
eventually return a correct answer permanently.

The algorithm is described by the three rewriting
rules in Figure 1. On the left hand side, the state
and input of an initiator and a responder should be
matched. The symbol “x” denotes that the input can
always be matched. On the right hand side, the state
of the two nodes would be updated by the rule.

%)) = (L), (=)
*)) = (L), (=)
%)) = (=), (=)

FEach node outputs its own state.

Rule 1. ((L,*), (L,
Rule 2. ((—, F), (-,
Rule 3. ((—,T), (-,

Figure 1. Algorithm for self-stabilizing leader
election in complete graphs.

In [6], it has already been shown that the algorithm
implements self-stabilizing leader election in complete

graph under both global and local fairness, provided
the existence of an eventual leader detector. Here we
have new verification result to show that the algorithm
is correct even under the weak fairness condition.

4.1 Modeling leader election in Spin

The model for leader election in complete graphs
follows the general paradigm of population protocol in
Section 3, only with some additional definition issues.

The states of the whole system are represented by an
array of bits leader[N], NV is the number of nodes in the
network. When leader[i] equals to 1, it indicates that
node 7 claims to be a leader. Since we are modeling
self-stabilizing protocols, we have to ensure that the
protocol is correct starting from any arbitrary initial
configuration. We employ atomic sequences and case
selection in Promela to assign all possible values for
every state variable in a single step.

atomic{
if
:: atomic{true -> leader[0]=0}
:: atomic{true -> leader[0]=1}
fi;
¥
Thus, at the beginning of the system, every state vari-
able could be assigned all possible values. The verifier
will check all these cases to ensure the self-stabilizing
property of the system.
Besides, we have to model the eventually correct
leader detector in the protocol. The detector is defined
by two parts. First, there is a random process which

randomly generates answers (encoded in the variable
detector) when the detector is in “incorrect” state:

proctype RandomDetector() {
do
i (detectorcorrect == 0) -> detector = false;
;- (detectorcorrect == 0) —> detector = true;
od

}

Then, we define another process that can switch the
detector’s state from “incorrect” to “correct” in a non-
deterministic way. The progress label ensures that the
transition will finally occur.

proctype DetectorCorrect() {
do
: (detectorcorrect == 0) -
progress: detectorcorrect = 1;
od

}

Once detectorcorrect becomes true, the value of detector
will depend on whether the sum of leader[i] (0 <1i < N)
is greater than 0.

Having defined the model, the LTL formula which
specifies the desirable system behavior is relatively
small. Under the weak fairness, the LTL formula for
leader election in complete graph is simply as follows:

<> [] oneLeader

This LTL formula says that along every path which sat-
isfies the weak fairness condition a unique leader will
eventually be elected. Here, onelLeader is the proposi-
tion stating that the sum of all leader[i] equals one. See
[15] for the detailed model.

4.2 \ferification results

It has been shown in [6] that the algorithm is valid
under the local fairness condition, and the fact that
the global fairness implies the local fairness condition
yields that the algorithm is also valid under the global
fairness. However, the weak fairness used in the verifi-
cation model is weaker than both of them. Thus it is
interesting to see if it is correct under such a weaker
fairness condition. Surprisingly, the algorithm indeed
implements self-stabilizing leader election in complete
graphs. We have verified the model with size up to six.
The detailed results are given in Figure 2.

State size | Transition size | Time Results
LE-3 | 558 92974 0.45s valid
LE-4 | 1661 629905 5.29s valid
LE-5 | 4856 3335330 41.71s | valid
LE-6 | 13629 14810700 264.07s | valid

Figure 2. Verification results of leader election
algorithm under the weak fairness.

4.3 Correctness under weak fairness

In this section, we show that the self-stabilizing
leader election algorithm is correct for any number of
nodes (N > 2), under the weak fairness condition. Our
proof follows the scheme in [6]. We call a configuration
of the protocol safe, if there are at least one node that
has become leader.

Lemma 4.1. Let E be an execution of the algorithm
starting from an arbitrary configuration. Then E con-
tains a safe configuration.

Theorem 4.2. Given an eventually correct leader de-
tector. Let E be a weak fair execution of the algorithm
starting from an arbitrary configuration. Then eventu-
ally one unique leader will be elected.

The proof of Lemma 4.1 is the same as in [6]. In the
following, we give the proof of Theorem 4.2, which is
also similar to the one in [6].

Proof. By Lemma 4.1, the algorithm can reach a safe
configuration. By the rules of the algorithm, the num-
ber of leaders decreases by one only when two leaders
interact via rule 1. So there is always at least one
leader in subsequent configurations. By the eventually
correct leader detector, eventually all nodes will receive
T, after which no more new leaders can be generated.
Now we prove that the number of leaders eventually
decreases using the weak fairness. We only consider
the case when there are more than one leader in the
configuration. Assume node ¢ and node j are leaders.
Since the graph is complete, the interaction between i
and j is enabled via rule 1. By subsequent steps in F,

e either they cannot change the state of either ¢ or 7,
then the interaction between ¢ and j keeps enabled.
By weak fairness, finally the interaction will take
place, and the number of leaders decreases;

e or they can change the state of either i or j, then
this must be done via rule 1, since that is the
only way to change the state of one node once the
leader detector is correct. The interaction between
i and j is disabled, and the number of leaders is
decreased by one.

O

5 Token Circulation in Directed Rings

The token circulation protocol in directed rings is
proposed in [1]. The desired behavior of this protocol
can be described as follows:

e There is only one node who holds the token.

e A node does not obtain again until every other
node has obtained a token once.

e Each node can have the token infinitely often.

The protocol is simple since we do not consider the
case that some nodes are not willing to release the to-
ken. It is assumed that every node passes the token
to next one right after it has got it. Furthermore,
the protocol also requires the existence of a common
leader. The state of each node is represented by a pair

in {—,+} x{0,1}. + means that the node is holding a
token, and — means the opposite. The second part of
a state of a node is called the label. The algorithm is
given by the rewriting rules in Figure 3.

Rule 1. ((+ b, N), (x b, L)) — ((=b), (+ b))
Rule 2. ((+ b,%), (x b, N)) — ((— b), (+ b))

Figure 3. Algorithm for token circulation in
directed rings.

The * here still denotes an always-matched symbol.
On the left hand side, the symbol b matches either 0
or 1 and b is its complement. It should be noticed
that different occurrences of b in a same rule refer to
the same value. The input for each node informs them
who is leader, which is unique in the network.

It has been proved in [13] that this algorithm imple-
ments a self-stabilizing token circulation in rings under
the global fairness condition, provided that there is a
unique leader.

5.1 Modeling token circulation in Spin

The model for token circulation protocol is similar
to the one in Section 4, only with some minor adapta-
tion. The states of the whole system are represented
by three arrays of bits leader[N], token[N] and label[N],
where N is the number of nodes in the network. With-
out loss of generality, we can assume that node 0 is
always the leader. Therefore, we could simply set each
node a fixed input (leader[i]) for leader election with-
out considering complicated details of a dynamic leader
election process, which we have analyzed in Section 4.

We still use each single process in Promela to model
a single action between each possible initiator and re-
sponder. However, now the network topologies are di-
rected rings instead of complete graphs. So each node
can only be the responder of its predecessor in a ring.
Thus, the system is represented as below.

run Rule1(0,1);
run Rulel(1,2);
run Rulel(2,3);

The verification goal is represented by a conjunction
of three LTL formulas, each for a goal of the protocol.
For the first goal that there is only one token in the
network, we use the LTL formula

<> [] oneToken

where oneToken is the predicate stating the sum of all
token[i] (0 <i < N) equals one.

For the second goal that a node does not obtain
again until every other node has obtained a token once,
it is obviously equivalent to the one that when a node
is holding a token, nobody could obtain the token until
its successor has obtained it once. For example, if the
network has four nodes, then the assertion for node 2
can be specified by the LTL formula

<> [] (token[2] => (!token[0] & !token[1] U token[3])).

For the last goal that every node obtains the token
infinitely often, we use a formula in the following form:

[] <> token[0] & ... & [] <> token[N-1]

We have done some experiments for the model under
the weak fairness, and the results are mostly negative.
The protocol is correct only when the size of the net-
work is three. When it comes to a size greater than
three, the Spin verifier complained about some failure
traces which satisfy the weak fairness condition. There-
fore, the weak fairness cannot guarantee the correctness
of the protocol.

Since the token circulation in rings does not work
properly under the weak fairness condition, we need to
verify it under global fairness condition. However, with
the ability limitation of Spin model checker (see more
discussion in Section 7), it seems infeasible to explicitly
model the global fairness. Here we use an alternative
method to verify the protocol. The algorithm is model
checked in a two-phase manner. We first show that un-
der a particular activation order chosen by a scheduler
(under the global fairness condition) safe configurations
are eventually reached. Then we show from these safe
configurations the token circulation is eventually sta-
bilized (under the weak fairness). The idea follows the
correctness proof of the protocol given in [13].

The safe configurations refer to those configurations
in which all nodes have a same label. With a scheduler
satisfying the global fairness, the order of activation for
nodes complies the following sequence:

(0,1),(1,2),..., (N —2,N — 1)

If there is no possible interaction between nodes i
and i+1 while the scheduler selects the activation (i, i+
1), then the scheduler just turns to the next pair of
nodes (i + 1,7 + 2).

In the corresponding model in Spin, we employ a
special variable turn to record the current activation
pair. Every transition process will check whether it
is its turn to do the transition. If it is the case, the

process will possibly be able to do the transition ac-
cording to the states of corresponding nodes. After the
transition having been done, the turn flag variable will
be increased by one. Those transitions which are not
selected by the scheduler will block itself. A special
watch-dog process is needed to handle the case when
no transition is enabled.

. timeout —>
if
o turn <= (N-2) => turn=turn+1;
fi;

The watchdog process uses a timeout to detect the
block state of the entire system. Thus, by using this
model, we can carry out the first part of the verifica-
tion, checking whether a safe configuration is reachable
from any initial configuration.

For the second part of the verification, we only need
to show that each of the three protocol goals is satisfied
from the same-label initial configurations. Thus we
only generate two possible initial configurations non-
deterministically at the beginning of the system run.
The modification is straightforward. See [15] for the
detailed model.

5.2 \Verification results

For the first phase, we can see from Figure 4 that
it is indeed the case that some safe configuration is
reachable under the particular activation order.

State size | Transition size | Time | Results
TC-4 | 1525 10121 0.02s | valid
TC-5 | 7063 36831 0.13s | valid
TC-6 | 19287 111535 0.42s | valid

State size | Transition size | Time | Results
TC-4 | 203 1114 0.01s | valid
TC-5 | 475 3466 0.01s | valid
TC-6 | 1083 11434 0.02s | valid

Figure 4. Verification results of token circula-
tion algorithm (part I).

As to the second phase, the verification shows that
the weak fairness is enough to ensure the correctness
of the protocol after reaching a safe configuration. The
results are shown in Figure 5. Note that the global
fairness is needed for the overall verification task.

6 Counter-examples for Local Fairness

In this section, we give one counter-example ! as ev-
idence that self-stabilizing token circulation in directed

IFor liveness properties, typically they are given as loops in
executions.

Figure 5. Verification results of token circula-
tion algorithm (part I1).

rings does require the global fairness, the local fairness
condition cannot guarantee its correctness.

In Section 5 we have shown that the algorithm is
correct under the weak fairness for three nodes. Hence,
the algorithm is also correct under local fairness for
a network of three nodes. In order to get counter-
examples under the local fairness condition, we need a
network counsisting of at least four nodes (and without
using the particular activation order in Section 5).

We need to first present eight configurations which
are involved in the counter-example, denoted by
01,02,...,08:

Nodep : + 1 Nodeg : + 1

Node; : + O Node; : — O

Cr= Nodey : — 1 C2= Node; : + 0
Nodes : + 1 Nodes : + 1

Nodeg : — 1 Nodey : + O

| Noder:+ 1 Node; : + 1
Cs = Nodes : + 0 Ca = Node, : + 0
Nodes : + 1 Nodes : — 1

Nodey : + O Nodep : + O

| Noder:+ 1 Node; : — 1
=1 Nodes:— 0 |9~ | Noder:+ 1
Nodes : + O Nodes : + O

Nodep : — 0 Nodey : + 1

C Node; : + 0 C Node; : + O
= Node; : + 1 8= Node; : + 1
Nodes : + 0 Nodes : — 0

According to the rewriting rules of the protocol, the
transitions enabled in each configuration are:

Cy: rulel(3,0), rule2(0,1), rule2(1,2)
Co: rulel(3,0), rule2(0,1), rule2(2,3)
Cs: rulel(3,0), rule2(1,2), rule2(2,3)
Cy: rule2(0,1), rule2(1,2), rule2(2,3)
Cs: rulel(3,0), rule2(0,1), rule2(1,2)
Cs: rulel(3,0), rule2(0,1), rule2(2,3)
C7: rulel(3,0), rule2(1,2), rule2(2,3)
Cs: rule2(0,1), rule2(1,2), rule2(2,3)

We can construct a trace starting from initial con-
figuration C4, looping from C; to Cs.

rule2(1,2) rule2(0,1) rule1(3,0) rule2(2,3)

Ch Co Cs Cy

rule2(rule2(0,1) rulel(rule2(

05 1,2) 06 C7 3,0) Cg 2,3) Ol

We can observe that actions enabled in these con-
figurations are rulel(3,0), rule2(0,1), rule2(1,2) and
rule2(2,3). Since each configuration occurs infinitely
many times in the trace, these four actions are also
enabled infinitely often. Clearly, the given trace satis-
fies the local fairness because these actions are actually
taken infinitely often. However, there are more than
one token in the infinite execution persistently, which
does not meet the requirement that eventually there is
only one token in the ring. 2

Similarly, we can also show that for self-stabilizing
leader election in rings [6] the local fairness is not a
sufficient condition by counter-examples generated in
Spin (see the Appendix).

7 Concluding Remarks

In this paper, we have reported our preliminary re-
sults on automatic verification of population proto-
cols. We defined a weak form of fairness condition
for population protocols, which is weaker than both
the global and the local fairness as originally required
for the population protocol model in [6]. This weak
fairness can be supported by Spin. We have success-
fully model checked the self-stabilizing leader election
in complete graphs under such a weaker fairness condi-
tion. (A formal correctness proof was also presented.)
Although the global fairness is indeed necessary for the
correctness of self-stabilizing token circulation in di-
rected rings, we have still managed to model check the
algorithm in Spin by a two-phase approach without
explicitly encoding the global fairness. This approach
follows the proof in [13]. More interestingly, counter-
examples to show why local fairness is insufficient for
token circulation have been automatically generated in
Spin. This has improved our understanding of the pop-
ulation protocol model.

Directly encoding global fairness will require auxil-
iary variables in the model to characterize fairness sit-
uations, this will increase the complexity of the model.
Furthermore, it will result in very large LTL formu-
las. Usually, a strong fairness condition in LTL has the
following form:

2In the trace, we ignore the inputs for each node, since we fix
the node 0 as the unique leader. This information is stored in
the array leaderfi].

<>[]enabled A=>[] <> A

in which A stands for an activity in the model and
enabled is the predicate specifying the condition when
A can be enabled. The global fairness for population
protocols requires that each step that can be taken in-
finitely often is actually taken infinitely often. Since
one step can be enabled in many different configura-
tions, this will require the enabled predicate to encode
all such configurations when the step A can be enabled.
Moreover, there are many more different steps in a pop-
ulation protocol. All these will end into a very large
LTL formula. Spin cannot deal with large LTL for-
mulas. The size of the formulas will also increase ex-
ponentially, when the number of nodes in the network
increases. 3 Therefore, even we can model the global
fairness, this approach does not scale up for verifying
population protocols.

Our study in this paper gives rise to two interesting
open questions: (1) Possibly we can find a fairness con-
dition which is weaker than the global fairness but still
strong enough to guarantee the correctness of popula-
tion protocols. For such a fairness condition, hopefully
the available model checkers can deal with. (2) For
population protocols, we do not encounter the usual
state explosion problem as in many other model check-
ing exercises, since a node only has few states in the
population protocol model. We in fact need efficient
model checking algorithms to deal with large LTL for-
mulas. The work reported in [9] is closely related, but
it still cannot be applied to population protocols as we
have checked in the paper. Our experience [7] of verifi-
cation of self-stabilizing distributed algorithms in PVS
suggests the possibility of using a theorem prover to
check population protocols under global fairness, which
is currently under our investigation.

Acknowledgments Jun Pang wants to thank Rena
Bakhshi and Wan Fokkink for bringing his attention
to the paper [6] on self-stabilizing population protocols.
Yuxin Deng would like to thank Jing Cao for interesting
discussions on the Spin model checker.

References

[1] D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang.
Self-stabilizing population protocols. In Proc. 9th
Conference on Principles of Distributed Systems, vol-
ume 3974 of LNCS, pages 103-117. Springer, 2005.

[2] J. Aspnes and E. Ruppert. An introduction to popu-
lation protocols. Bulletin of the Furopean Association
for Theoretical Computer Science, Distributed Com-
puting Column, 2007.

3The number of configurations will increase exponentially.

[3] P. C. Attie, N. Francez, and O. Grumberg. Fairness
and hyperfairness in multi-party interactions. Dis-
tributed Computing, 6:245-254, 1993.

[4] T. D. Chandra and S. Toueg. Unreliable failure de-
tector for reliable distributed systems. Journal of the
ACM, 43(2):225-267, 1996.

[5] F. Corradini, M. Di Berardini, and W. Vogler. Check-
ing a mutex algorithm in a process algebra with fair-
ness. In Proc. 15th Conference on Concurrency The-
ory, volume 4137 of LNCS, pages 142-157. Springer,
2006.

[6] M. J. Fischer and H. Jiang. Self-stabilizing leader
election in networks of finite-state anonymous agents.
In Proc. 10th Conference on Principles of Distributed
Systems, volume 4305 of LNCS, pages 395-409.
Springer, 2006.

[7] W.J.Fokkink, J.-H. Hoepman, and J. Pang. A note on
K-state self-stabilization in a ring with K=N. Nordic
Journal of Computing, 12(1):18-26, 2005.

[8] R. Fuzzati, M. Merro, and U. Nestmann. Distributed
consensus, revisited. Acta Informatica, 44(6):377-425,
2007.

[9] M. Hammer, A. Knapp, and S. Merz. Truly on-the-
fly LTL model checking. In Proc. 11th Conference on
Tools and Algorithms for the Construction and Analy-
sis of Systems, volume 3440 of LNCS, pages 191-205.
Springer, 2005.

[10] G. J. Holzmann. On-The-Fly, LTL Model Checking
with Spin. http://spinroot.com.

[11] G. J. Holzmann. The model checker Spin. IEEFE
Transactions on Software Engineering, 23(5):279-295,
1997.

[12] G. J. Holzmann. The Spin Model Checker: Primer
and Reference Manual. Addison-Wesley, 2003.

[13] H. Jiang. Distributed Systems of Simple Interacting
Agents. PhD thesis, Yale University, 2007.

[14] L. Lamport. Fairness and hyperfairness. Distributed
Computing, 13(4):239-245, 2000.

[15] Z. Luo, J. Pang, and Y. Deng. Promela source codes of
self-stabilizing population protocols. http://basics.
sjtu.edu.cn/~zhengqin/population.

[16] H. Volzer. On conspiracies and hyperfairness in dis-
tributed computing. In Proc. 19th Conference on Dis-
tributed Computing, volume 3724 of LNCS, pages 33—
47. Springer, 2005.

[17] H. Vélzer, D. Varacca, and E. Kindler. Defining fair-
ness. In Proc. 14th Conference on Concurrency The-
ory, volume 3653 of LNCS, pages 458-472. Springer,
2005.

Appendix: counter-examples for leader
election in rings under local fairness

We have modeled the algorithm for self-stabilizing
leader election in rings from [6], which is more compli-
cated than the one for complete graphs. An eventually
correct leader detector is also needed. In this algo-
rithm, each node has three types of memory slots for

tokens: a bullet slot (B), a leader mark slot (L), and
a shield slot (S). (—) represents an empty slot, and a
full slot is denoted by its token. The order of slots in
each node is (bullet, leader, shield). The leader detec-
tor gives each node an input true (T) or false (F) to
indicate that whether there is a leader in the network.
The algorithm is described by the following rules.

Rule 1. ((x * *, F),(x * %, %)) — (B LS),(x * %))
Rule 2. ((x —S,T),(x * *, %)) = ((* —=),(=* 5))
Rule 3. ((x L S,T),(x % %, x)) — ((B L —),(—% 9))
Rule 4. (* L —,T),(—* %, x)) — (B L —),(—x* x*))
Rule 5. ((x* x—,T),(Bx* *, %)) — (B——=),(— % %))

FEach node outputs its own leader slot.

Figure 6. Algorithm for self-stabilizing leader
election in rings

It has been shown that leader election in rings does
not work under the local fairness condition [6]. We
used a model similar to the one in Section 4 and veri-
fied it in Spin. We have found several counter-examples
which indicate that the algorithm does not work prop-
erly under the local fairness. Here we presented one
of them. First, we present three configurations for a
network with three nodes, denoted by C4,Cs and Cs:

Nodeo : B L — Nodeg: — L S
C, = Node; : — — S Cy = Node; : — — S
Node, : — L S Node, : B L —

Nodep: — L S

Cs = Node; : — — —

Node; : — L S

According Figure 6, the actions enabled in each con-
figuration are:

Ci: rule2(1,2), rule3(2,0), rule4(0,1)
Ca: rule2(1,2), rule3(0,1), rule4(2,0)
C3: rule3(0,1), rule3(2,0)

We can construct a trace starting from initial con-
figuration C1, looping from C; to Cj.

rule4(0,1) rule3(ruled(rule2(1,2) rule3(0,1)

o) O, MR, 6, M0 Cs

Since each configuration occurs infinitely many
times in the trace, those five actions are also enabled
infinitely often. Clearly, the given trace satisfies the
local fairness because these actions are actually taken
infinitely often. However, there are two leaders in the
infinite execution persistently. (In the trace, we ignore
the inputs T for each node.)

